Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
181859 | Electrochemistry Communications | 2007 | 5 Pages |
The Si/SiO nanocomposite was synthesized by a sol–gel method in combination with a following heat-treatment process. It was analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), cyclic voltammetry (CV) and capacity measurement as anode material for lithium ion battery. Si nanoparticles were coated with SiO and a core-shell structured nanocomposite was formed. The core-shell Si/SiO nanocomposite displays better reversibility of lithium insertion/extraction and higher coulomb efficiency than virginal Si nanoparticles. The SiO shell envelops the Si nanoparticles to suppress the aggregation of the nanoparticles during cycling. As a result, the core-shell Si/SiO nanocomposite exhibits better capacity retention than virginal Si nanoparticles, indicating that this is a promising approach to improve the electrochemical performance of nano anode materials for lithium ion battery.