Article ID Journal Published Year Pages File Type
181903 Electrochemistry Communications 2007 5 Pages PDF
Abstract

The optimization of interfacial charge transfer between the dye and the electrolyte is crucial to the design of dye-sensitized solar cells. In this paper, we address the combined use of an ionic liquid crystal electrolyte and amphiphilic ruthenium dyes in dye-sensitized solar cells. The solar cell with an amphiphilic ruthenium dye [Ru(H2dcbpy)(tdbpy)(NCS)2] (H2dcbpy = 4,4′-dicarboxy-2,2′-bipyridine, tdbpy = 4,4′-tridecyl-2,2′-bipyridine), exhibited a short-circuit photocurrent density of 9.1 mA/cm2, an open-circuit voltage of 665 mV and a fill factor of 0.58, corresponding to an overall conversion efficiency of 3.51%. We find that increasing dye alkyl chain length to octadecyl from tridecyl results in lower short-circuit photocurrent density and open-circuit voltage, and the suitable dyes for ionic liquid crystal electrolyte differed completely from those used in liquid and ionic liquid electrolyte cells.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,