Article ID Journal Published Year Pages File Type
181968 Electrochemistry Communications 2007 6 Pages PDF
Abstract

The present paper describes the electrochemical fabrication of nanostructured oxide films on a TiAl intermetallic compound. The alloy is investigated under conditions where the individual alloying elements show the growth of ordered oxide structures, i.e. anodization is carried out in fluoride containing and fluoride free H2SO4 electrolytes. In 1 M H2SO4 the alloy shows randomly ordered nanoporous oxide structures while in HF-containing electrolytes highly ordered films can be formed. The key factor that affects the morphology is the anodizing potential. At low potentials (∼10 V) self-organized nanopores are formed whereas at higher potentials (∼40 V) separation of the pore walls and therefore formation of nanotubes can be observed. The results clearly indicate that on TiAl a wide range of nanoscale morphologies can be achieved ranging from random porous to organized pores to organized tubes.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,