Article ID Journal Published Year Pages File Type
182061 Electrochemistry Communications 2007 6 Pages PDF
Abstract

In the present investigation, PtRuTiOx/C electrocatalyst was prepared by a modified polyol synthesis method and the as-prepared electrocatalyst was treated under the reductive atmosphere (30 vol% H2 in Ar) at 500 °C for 2 h (denoted as PtRuTiOx/C-500) to enhance the interaction between the metal particles and the support. For comparison, the commercial PtRu/C electrocatalyst was also treated by the same procedure as PtRuTiOx/C (denoted as PtRu/C-500). Transmission electron microscopy results indicated that PtRuTiOx/C electrocatalyst exhibited not only a uniform dispersion and narrow size distribution with a smaller particle size, but also excellent stability during the thermal treatment. In contrast, the commercial PtRu/C electrocatalyst is not stable during the thermal treatment and the metal particles greatly agglomerated. The results of CO-stripping voltammetry, single direct methanol fuel cell tests and life-time test jointly showed that PtRuTiOx/C-500 had better durability than commercial PtRu/C while keeping a desirable activity toward methanol electro-oxidation, which may be attributed to the addition of titanium oxide that improved the interaction between noble metal particles and the support.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , ,