Article ID Journal Published Year Pages File Type
182090 Electrochemistry Communications 2007 7 Pages PDF
Abstract

The supply of cathode reactants in a passive direct methanol fuel cell (DMFC) relies on naturally breathing oxygen from ambient air. The successful operation of this type of passive fuel cell requires the overall mass transfer resistance of oxygen through the layered fuel cell structure to be minimized such that the voltage loss due to the oxygen concentration polarization can be reduced. In this work, we propose a new membrane electrode assembly (MEA), in which the conventional cathode gas diffusion layer (GDL) is eliminated while utilizing a porous metal structure for transporting oxygen and collecting current. We show theoretically that the new MEA enables a higher mass transfer rate of oxygen and thus better performance. The measured polarization and constant-current discharging behavior showed that the passive DMFC with the new MEA yielded better and much more stable performance than did the cell having the conventional MEA. The EIS spectrum analysis further demonstrated that the improved performance with the new MEA was attributed to the enhanced transport of oxygen as a result of the reduced mass transfer resistance in the fuel cell system.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, ,