Article ID Journal Published Year Pages File Type
182138 Electrochemistry Communications 2007 4 Pages PDF
Abstract

Platinum supported on WC (Pt/WC) catalyst (20 wt.% Pt) was synthesized as a new methanol electro-oxidation catalyst. Particle size of 7.5 nm was obtained from X-ray diffraction results and a uniform distribution of particles was observed by transmission electron microscopy. In cyclic voltammetry (CV) measurement, the reduction peak potential of PtO increased from 0.72 V in commercial Pt/C to 0.76 V in Pt/WC. By combining the CV and CO stripping results, spill-over of H+ from Pt to WC was observed. Electrochemically active surface area calculated from the desorption area of H+ were 11.2 and 5.74 m2/g catalyst for Pt/WC and Pt/C, while those obtained from the desorption area of CO were 4.42 and 6.40 m2/g catalyst, respectively. CO electro-oxidation peak potential greatly decreased from 0.80 V in Pt/C to 0.68 V in Pt/WC. The reaction of WC with water to produce WC–OH could lower to CO electro-oxidation peak potential. Specific activity for methanol electro-oxidation increased from 144 mA/m2 in Pt/C to 188 mA/m2 in Pt/WC.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,