Article ID Journal Published Year Pages File Type
182159 Electrochemistry Communications 2008 5 Pages PDF
Abstract

Surface immobilization of dendrons and dendrimers presents an exciting opportunity for creating a wide variety of functionalized polymeric architectures suitable for the immobilization of biomolecules. Dendritic molecules contain multifunctional groups that can be efficiently modified to control the properties of the resulting polymers. We are developing strategies to generate a highly functionalized surface using multifunctional and rigid dendrons immobilized onto different substrates. In this paper, electrochemical methods and scanning probe microscopy were used to explore the immobilization of a dendritic macromolecule (3,5-bis(3,5-dinitrobenzoylamino)benzoic acid) or (D-NO2) onto gold electrodes. D-NO2 adsorbs spontaneously by dipping the metal surface in dendron solution and also via grafting of cystamine covalent attached to gold electrode. Reduction of this layer generates the hydroxylamine product. The resulting redox-active layer exhibits a well-behaved redox response for the adsorbed nitroso/hydroxylamine couple.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,