Article ID Journal Published Year Pages File Type
182264 Electrochemistry Communications 2007 8 Pages PDF
Abstract

This communication describes the electron transport behaviour of basal plane pyrolytic graphite electrodes (BPPGEs) modified with nickel powder (BPPGE-Ni), single-walled carbon nanotube (BPPGE-SWCNT) and BPPGE-Ni decorated with SWCNT via drop-dry method (BPPGE-Ni-SWCNT). The BPPGE-Ni gave enhanced Faradaic response for the redox probe (Ferricyanide/Ferrocyanide species) and also displayed enhanced electrocatalytic behaviour towards the detection of degradation products of V-type nerve agents, dimethylaminoethanethiol (DMAET) and diethylaminoethanethiol (DEAET) with high sensitivity (∼23 × 10−3 AM−1) and low detection limits (4.0–9.0 μM range). When compared to the notable electrodes and detection protocols reported in the literature, BPPGE-Ni exhibits more promising features required for a simple, highly sensitive, fast and less expensive electrode for the detection of these V-type nerve agents in aqueous solution. The efficient response of the BPPGE-Ni is attributed to the high microscopic surface area of the nickel powder. The poor response of the BPPGE-Ni-SWCNT suggests that nickel impurity in the SWCNT did not show any detectable impact on its electron transfer kinetics.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, ,