Article ID Journal Published Year Pages File Type
182281 Electrochemistry Communications 2007 5 Pages PDF
Abstract

SnS particles with sizes of 5.0–6.5 nm were prepared by a facile method. Resorcinol–formaldehyde sol with addition of the as-prepared SnS nanoparticles was spin-coated on a copper foil to prepare net-like SnS/C composite thin-film electrode for lithium ion batteries after carbonization at 650 °C. The SnS/C nanocomposite thin-film electrode showed preferable first coulombic efficiency and excellent cycling stability. The discharge and charge capacities were respectively 542.3 and 531.3 mAh/g after 40 cycles. The attractive electrochemical performances were mainly ascribed to the ultra fine particle, which showed no evident aggregation in high-resolution TEM image, and the effects of 3-dimensional net-like carbon structure, which uniformly surrounded the SnS nanoparticles to guarantee the contact, acted as a buffer matrix to alleviate the volume expansion of Li–Sn alloy and provided enough paths for electrolyte to reach SnS active material during discharge–charge process.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,