Article ID Journal Published Year Pages File Type
182483 Electrochemistry Communications 2007 7 Pages PDF
Abstract

A kind of nanocomposite with good dispersion in water was prepared through noncovalent adsorption of iron picket-fence porphyrin (FeTMAPP), iron-5,10,15,20-tetrakis[αααα-2-trismethylammoniomethyl-phenyl]porphyrin, on multiwalled carbon nanotubes (MWNTs). UV–visible spectroscopic and electrochemical methods were used to characterize the nanocomposite. A gold nanoparticles/nanocomposite self-assembled monolayer was formed on gold electrode and showed highly synergetic behavior towards the electrocatalytic reduction of O2 with a decrease of overpotential of 200 mV. FeTMAPP acted as the catalytic active center, and MWNTs increased the amount of FeTMAPP adsorbed and accelerated the electron transfer between FeTMAPP and electrode. The resulting biosensor exhibited good response to oxygen with a linear range from 0.52 to 180 μM and a detection limit of 0.38 μM, without the interference of ascorbic acid and uric acid, which showed an application potential of the proposed nanocomposite and monolayer in detection of dissolved oxygen and oxidase substrates.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,