Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
182484 | Electrochemistry Communications | 2007 | 5 Pages |
A novel electrogenerated chemiluminescence aptamer-based (ECL-AB) biosensor for the determination of a small molecule drug is designed employing cocaine-binding aptamer as molecular recognition element for cocaine as a model analyte and ruthenium complex served as an ECL label. A 5′-terminal cocaine-binding aptamer with the ECL label at 3′-terminal of the aptamer was utilized as an ECL probe. The ECL-AB biosensors were fabricated by immobilizing the ECL probe onto a gold electrode surface via thiol-Au interactions. An enhanced ECL signal is generated upon recognition of the target cocaine, attributed to a change in the conformation of the ECL probe from random coil-like configuration on the probe-modified film to three-way junction structure, in close proximity to the sensor interface. The integrated ECL intensity versus the concentration of cocaine was linear in the range from 5.0 × 10−9 to 3.0 × 10−7 M. The detection limit was 1.0 × 10−9 M. This work demonstrates that the combination of a highly binding aptamer to analyte with a highly sensitive ECL technique to design ECL-AB biosensor is a great promising approach for the determination of small molecule drugs.