Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1835640 | Nuclear and Particle Physics Proceedings | 2015 | 6 Pages |
The latest results from the Double Chooz experiment on the neutrino mixing angle θ13 are presented. A detector located at an average distance of 1050 m from the two reactor cores of the Chooz nuclear power plant has accumulated a live time of 467.90 days, corresponding to an exposure of 66.5 GW-ton-year (reactor power × detector mass × live time). A revised analysis has boosted the signal efficiency and reduced the backgrounds and systematic uncertainties compared to previous publications, paving the way for the two detector phase. The measured is extracted from a fit to the energy spectrum. A deviation from the prediction above a visible energy of 4 MeV is found, being consistent with an unaccounted reactor flux effect, which does not affect the θ13 result. A consistent value of θ13 is measured in a rate-only fit to the number of observed candidates as a function of the reactor power, confirming the robustness of the result.