Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1836404 | Nuclear Physics A | 2011 | 10 Pages |
The aim of this work is to track the phenomenon of α-cluster transfer mechanism at low energies 1.25, 1.5 and 1.75 MeV/n, close to the Coulomb barrier energy for 12C(16O, 12C)16O and 16O(12C, 16O)12C nuclear systems. The measurements of the angular distribution show a significant increase in the differential cross section at large angles due to alpha-transfer mechanism. The optical model code SPI-GENOA could be used effectively for fitting the experimental data with the theoretical predictions nearly up to angle 90°, where the differential cross section decreases steadily with increasing the scattering angle. For the second hemisphere, at angles greater than 100°, there is a large increase in cross section due to the contribution of α-transfer mechanism, and the Distorted Wave Born Approximation (DWBA) method could be used effectively for fitting the experimental data with the theoretical predictions at this region using (DWUCK5) code.