Article ID Journal Published Year Pages File Type
1836698 Nuclear Physics A 2011 19 Pages PDF
Abstract

We study the oblate–prolate shape mixing in the low-lying states of proton-rich Kr isotopes using the five-dimensional quadrupole collective Hamiltonian. The collective Hamiltonian is derived microscopically by means of the CHFB (constrained Hartree–Fock–Bogoliubov) + Local QRPA (quasiparticle random phase approximation) method, which we have developed recently on the basis of the adiabatic self-consistent collective coordinate method. The results of the numerical calculation show the importance of large-amplitude collective vibrations in the triaxial shape degree of freedom and rotational effects on the oblate–prolate shape mixing dynamics in the low-lying states of these isotopes.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Nuclear and High Energy Physics