Article ID Journal Published Year Pages File Type
1837185 Nuclear Physics A 2010 18 Pages PDF
Abstract

The range corrections to the universal properties and structure of two-neutron halo nuclei are investigated within an effective quantum mechanics framework. Treating the nucleus as an effective three-body system, we make a systematic improvement upon previous calculations by calculating the linear range corrections at next-to-leading order. Since the effective ranges for the neutron–core interactions are not known, we estimate the effective range to be set by the inverse of the pion mass. We investigate the possibility of excited Efimov states in two-neutron halo nuclei and calculate their mean square radii to next-to-leading order. We find that the effective range corrections are generally small and the leading order predictions are very robust.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Nuclear and High Energy Physics