Article ID Journal Published Year Pages File Type
1837348 Nuclear Physics A 2014 42 Pages PDF
Abstract
We demonstrate that the cross section for two-gluon production in heavy-light ion collisions contains a power-law infrared (IR) divergence even for fixed produced gluon momenta: while saturation effects in the target regulate some of the power-law IR-divergent terms in the lowest-order expression for the two-gluon correlator, other power-law IR-divergent terms remain, possibly due to absence of saturation effects in the dilute projectile. Finally we rewrite our result for the two-gluon production cross-section in a kT-factorized form, obtaining a new factorized expression involving a convolution of one- and two-gluon Wigner distributions over both the transverse momenta and impact parameters. We show that the two-gluon production cross-section depends on two different types of unintegrated two-gluon Wigner distribution functions.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Nuclear and High Energy Physics
Authors
, ,