Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1837412 | Nuclear Physics A | 2010 | 26 Pages |
Abstract
Neutrinoless double beta (0νββ) decay of the 76Ge, 82Se, 128Te, 130Te and 136Xe nuclei is discussed in terms of the associated nuclear matrix element (NME). The effects of the size of the single-particle model space and the occupancies of individual orbits on the NME are discussed by using the proton–neutron quasiparticle random-phase approximation (pnQRPA) with effective, G-matrix-derived nuclear forces. It is found that only in some cases the orbital occupancies play a decisive role for the size of the NME, whereas the inclusion of all the spin–orbit partners is essential to achieve a NME of reasonable quality. The obtained results are compared with published results of other models.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Nuclear and High Energy Physics