Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1838303 | Nuclear Physics A | 2007 | 21 Pages |
A model of particle production is developed based on a parallel with a theory of Bose–Einstein condensation and similarities with other critical phenomena such as critical opalescence. The role of a power law critical exponent τ and Levy index α are studied. Various features of this model are developed and compared with other commonly used models of particle production which are shown to differ by having different values for τ, α. While void scaling is a feature of this model, hierarchical structure is not a general property of it. The value of the exponent τ=2 is a transition point associated with void and hierarchical scaling features. An exponent γ is introduced to describe enhanced fluctuations near a critical point. Experimentally determined properties of the void scaling function can be used to determine τ.