Article ID Journal Published Year Pages File Type
1839136 Nuclear Physics A 2007 25 Pages PDF
Abstract

Symmetry and pairing energies of atomic nuclei are related to the differences between the excitation energies of isobaric analog states in the same nucleus. Numerous such excitation energies are known experimentally. In addition, a comprehensive global set can be deduced from the available experimental masses by applying Coulomb energy corrections. Replacing the experimental mass data by available theoretical mass predictions as basis for this procedure to extract symmetry and pairing energies makes it possible to directly compare theoretical and experimental quantities. These comparisons reflect upon the goodness or possible shortcomings of the respective mass equation since symmetry energies are related to the curvature of the nuclear mass surface. A discussion of eleven selected mass equations or procedures for reproducing experimental masses and extrapolating into regions of unknown nuclei is presented.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Nuclear and High Energy Physics