Article ID Journal Published Year Pages File Type
1839523 Nuclear Physics A 2007 17 Pages PDF
Abstract

We present a description of symmetric nuclear matter within the framework of Landau Fermi liquid theory. The low momentum nucleon–nucleon interaction Vlow-k is used to calculate the effective interaction between quasiparticles on the Fermi surface, from which we extract the quasiparticle effective mass, the nuclear compression modulus, the symmetry energy, and the anomalous orbital gyromagnetic ratio. The exchange of density, spin, and isospin collective excitations is included through the Babu–Brown induced interaction, and it is found that in the absence of three-body forces the self-consistent solution to the Babu–Brown equations is in poor agreement with the empirical values for the nuclear observables. This is improved by lowering the nucleon and meson masses according to Brown–Rho scaling, essentially by including a scalar tadpole contribution to the meson and nucleon masses, as well as by scaling gA. We suggest that modifying the masses of the exchanged mesons is equivalent to introducing a short-range three-body force, and the net result is that the Brown–Rho double decimation [G.E. Brown, M. Rho, Phys. Rep. 396 (2004) 1] is accomplished all at once.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Nuclear and High Energy Physics