Article ID Journal Published Year Pages File Type
1840314 Nuclear Physics B 2016 32 Pages PDF
Abstract

The random-cluster model, a correlated bond percolation model, unifies a range of important models of statistical mechanics in one description, including independent bond percolation, the Potts model and uniform spanning trees. By introducing a classification of edges based on their relevance to the connectivity we study the stability of clusters in this model. We prove several exact relations for general graphs that allow us to derive unambiguously the finite-size scaling behavior of the density of bridges and non-bridges. For percolation, we are also able to characterize the point for which clusters become maximally fragile and show that it is connected to the concept of the bridge load. Combining our exact treatment with further results from conformal field theory, we uncover a surprising behavior of the (normalized) variance   of the number of (non-)bridges, showing that it diverges in two dimensions below the value 4cos2⁡(π/3)=0.2315891⋯ of the cluster coupling q. Finally, we show that a partial or complete pruning of bridges from clusters enables estimates of the backbone fractal dimension that are much less encumbered by finite-size corrections than more conventional approaches.

Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , ,