Article ID Journal Published Year Pages File Type
1840332 Nuclear Physics B 2016 20 Pages PDF
Abstract

We study the emergence of Heisenberg (Bianchi II) algebra in hyper-Kähler and quaternionic spaces. This is motivated by the rôle these spaces with this symmetry play in N=2N=2 hypermultiplet scalar manifolds. We show how to construct related pairs of hyper-Kähler and quaternionic spaces under general symmetry assumptions, the former being a zooming-in limit of the latter at vanishing scalar curvature. We further apply this method for the two hyper-Kähler spaces with Heisenberg algebra, which is reduced to U(1)×U(1)U(1)×U(1) at the quaternionic level. We also show that no quaternionic spaces exist with a strict Heisenberg symmetry – as opposed to Heisenberg⋉U(1)Heisenberg⋉U(1). We finally discuss the realization of the latter by gauging appropriate Sp(2,4)Sp(2,4) generators in N=2N=2 conformal supergravity.

Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , , ,