Article ID Journal Published Year Pages File Type
1846604 Nuclear Physics B - Proceedings Supplements 2011 6 Pages PDF
Abstract

We summarize results of recent studies of heavy quarkonia correlators and spectral functions at finite temperatures from lattice QCD and systematic T-matrix studies using QCD motivated finite-temperature potentials. We argue that heavy quarkonia dissociation shall occur in the temperature range 1.2⩽Td/Tc⩽1.5 by the interplay of both screening and absorption in the strongly correlated plasma medium. We discuss these effects on the quantum mechanical evolution of quarkonia states within a time-dependent harmonic oscillator model with complex oscillator strength and compare the results with data for from RHIC and SPS experiments. We speculate whether the suppression pattern of the rather precise NA60 data from In-In collisions may be related to the recently discovered X(3872) state. Theoretical support for this hypothesis comes from the cluster expansion of the plasma Hamiltonian for heavy quarkonia in a strongly correlated medium.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Nuclear and High Energy Physics