Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1848449 | Nuclear Science and Techniques | 2007 | 7 Pages |
Abstract
The adsorption behaviors of uranium on three soil humic acids (HAs), which were extracted from soils of different depths at the same site, were investigated under various experimental conditions. The adsorption results showed that U(VI) in solutions can be adsorbed by the three soil HAs, with the order of FHA (HA from 5 m depth of soil) >SHA (HA from the surface) >THA (HA from 10m depth of soil) for adsorption efficiency in each desirable condition, and the adsorption reached equilibrium in about 240 min. Although the maximum adsorption efficiency was achieved at a suitable uranium concentration (10 mg
- Lâ1 U(VI) for SHA and THA, 20 mg
- Lâ1 U(VI) for FHA), the adsorption could be described with Langmiur isotherm or Freundlich isotherm equation. The L/S (liquid/solid, mL/g) ratio and pH were important factors influencing the adsorption in our adsorption system besides uranium concentration. The adsorption efficiency decreased with the increase of the L/S ratio and pH at the pH range of 2.0-3.0 for SHA and THA or 2.5 - 6.0 for FHA. However, no significant difference in adsorption of U(VI) was observed at the experimental temperature. All the results implied that humic substances have different characteristics in samples even collected at the same site.
- Lâ1 U(VI) for SHA and THA, 20 mg
- Lâ1 U(VI) for FHA), the adsorption could be described with Langmiur isotherm or Freundlich isotherm equation. The L/S (liquid/solid, mL/g) ratio and pH were important factors influencing the adsorption in our adsorption system besides uranium concentration. The adsorption efficiency decreased with the increase of the L/S ratio and pH at the pH range of 2.0-3.0 for SHA and THA or 2.5 - 6.0 for FHA. However, no significant difference in adsorption of U(VI) was observed at the experimental temperature. All the results implied that humic substances have different characteristics in samples even collected at the same site.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Nuclear and High Energy Physics
Authors
Min WEI, Jiali LIAO, Ning LIU, Dong ZHANG, Houjun KANG, Yuanyou YANG, Yong YANG, Jiannan JIN,