Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1848642 | Nuclear Physics B - Proceedings Supplements | 2014 | 11 Pages |
We studied the neutrinoless double beta decay process to tackle the issue about the nature of neutrino. Establishing the nature of neutrinos, whether they are Dirac or Majorana particles is one of the fundamental questions we need to answer in particle physics, and is related to the conservation of lepton number. Neutrinoless double beta decay ((ββ)0ν) is the tool of choice for testing the Majorana nature of neutrinos. However, up to now, this process has not been observed, but a wide experimental effort is taking place worldwide and soon new results will become available.Different mechanisms can induce (ββ)0ν-decay and might interfere with each other, potentially leading to suppressed contributions to the decay rate. This possibility would become of great interest if upcoming neutrino mass measurements from KATRIN and cosmological observations found that but no positive signal was observed in (ββ)0ν-decay experiments. We focus on the possible interference between light Majorana neutrino exchange with other mechanisms, such as heavy sterile neutrinos and R-parity violating supersymmetric models. We show that in some cases the use of different nuclei would allow to disentangle the different contributions and allow to test the hypothesis of destructive interference. Finally, we present a model in which such interference can emerge and we discuss the range of parameters which would lead to a significant suppression of the decay rate.