Article ID Journal Published Year Pages File Type
1849023 Nuclear Physics B - Proceedings Supplements 2011 7 Pages PDF
Abstract

We present a new method for the identification of extensive air showers initiated by different primaries. The method uses the multiscale concept and is based on the analysis of multifractal behaviour and lacunarity of secondary particle distributions together with a properly designed and trained artificial neural network. In the present work the method is discussed and applied to a set of fully simulated vertical showers, in the experimental framework of ARGO-YBJ, to obtain hadron to gamma primary separation. We show that the presented approach gives very good results, leading, in the 1–10 TeV energy range, to a clear improvement of the discrimination power with respect to the existing figures for extended shower detectors.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Nuclear and High Energy Physics