Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1854586 | Progress in Particle and Nuclear Physics | 2007 | 10 Pages |
Radiative capture cross sections play a significant role in many cosmic phenomena, e.g. galactic evolution, star formation and planet formation etc. In explosive stellar burning scenarios, a large number of unstable nuclei play a crucial role, and reliable reaction cross sections are necessary for astrophysical model calculations, which will help in turn to understand the phenomena. A number of indirect methods are being explored by experimental nuclear physicists to avoid radioactive targets and other difficulties of direct measurements of radiative capture cross sections. The Coulomb dissociation of radioactive ion beams at intermediate energy is one of the most powerful indirect methods for measuring capture cross sections, and is being explored at various laboratories in the world. Here, a brief current status report is presented. This indirect method has a number of advantages compared to direct measurements, but there are also a number of limitations to this method with the presently available experimental facilities. A discussion on these aspects is given, together with an outlook on future experimental prospects.