Article ID Journal Published Year Pages File Type
1859765 Physics Letters A 2014 4 Pages PDF
Abstract
It is experimentally known that virus exhibits stochastic motion in cytoplasm of a living cell in the free form as well as the form being contained in the endosome and the exponent of anomalous diffusion of the virus fluctuates depending on localized areas of the cytoplasm. Here, a theory is developed for establishing a generalized fractional kinetics for the infection pathway of the virus in the cytoplasm in view of superstatistics, which offers a general framework for describing nonequilibrium complex systems with two largely separated time scales. In the present theory, the existence of a large time-scale separation in the infection pathway is explicitly taken into account. A comment is also made on scaling nature of the motion of the virus that is suggested by the theory.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
,