Article ID Journal Published Year Pages File Type
1861282 Physics Letters A 2014 5 Pages PDF
Abstract

We study the effective manipulation of the Andreev bound states (ABS), zero mode Majorana fermion and Josephson current (JC) in a superconductor–normal–superconductor junction on the surface of a topological insulator in unexplored regime of parameters. It is found that the energy of the ABS changes dramatically with the phase difference between both superconductors (SCs) in a certain range of the incident angle of quasiparticles. It is shown that the velocity of Majorana fermion and the JC can be effectively tuned in a wide range of the chemical potential in the normal region (μNμN) and the separation width (L  ) of the two SCs. In addition, we expose that the critical JC and its product with the normal resistance are, respectively, a quarter and the same to those in a graphene-based Josephson junction. The dependence of the critical JC on the chemical potential in the superconducting region is not monotonous: it increases (decreases) for small (large) μNμN.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
, , , , ,