Article ID Journal Published Year Pages File Type
1863701 Physics Letters A 2007 5 Pages PDF
Abstract
Using Monte Carlo simulations, we have found that there is a surprising non-monotonic dependence of a polymer's diffusion coefficient upon the degree of disorder of the surrounding environment. Starting with a two-dimensional periodic lattice of obstacles, we randomly displace obstacles to create a quenched gel system with a tunable degree of disorder. Very small displacements increase the diffusion coefficient of polymers since they increase the width of the tube through which the polymer chains reptate. As we displace the obstacles further, however, entropic trapping is observed and the diffusion coefficient of the polymer decreases dramatically. This is a striking example of the delicate balance between entropic and frictional effects for a polymer diffusing in a dense system.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
, ,