Article ID Journal Published Year Pages File Type
1882429 Radiation Physics and Chemistry 2014 4 Pages PDF
Abstract
Monte Carlo simulations of electromagnetic particle interactions and transport by FLUKA and PENELOPE were compared. 10 keV to 10 MeV incident photon beams impinged a LYSO crystal and a soft-tissue phantom. Central-axis as well as off-axis depth doses agreed within 1 s.d.; no systematic under- or over-estimate of the pulse height spectra was observed from 100 keV to 10 MeV for both materials, agreement was within 5%. Simulation of photon and electron transport and interactions at this level of precision and reliability is of significant impact, for instance, on treatment monitoring of hadrontherapy where a code like FLUKA is needed to simulate the full suite of particles and interactions (not just electromagnetic). At the interaction-by-interaction level, apart from known differences in condensed history techniques, two-quanta positron annihilation at rest was found to differ between the two codes. PENELOPE produced a 511 keV sharp line, whereas FLUKA produced visible acolinearity, a feature recently implemented to account for the momentum of shell electrons.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Radiation
Authors
, , , , , ,