Article ID Journal Published Year Pages File Type
1883403 Radiation Physics and Chemistry 2014 4 Pages PDF
Abstract

•Development of accelerator-driven neutron sources.•Fast neutron spectrometry.•Multi-foil activation technique.•Nuclear data measurement and validation in the energy range of IFMIF.

The concept of International Fusion Material Irradiation Facility (IFMIF) is based on the d(40)-Li neutron source reaction which produces the white neutron spectrum with mean energy of 14 MeV, energy range with high intensity of neutron beam up to 35 MeV, and weak tail up to 55 MeV. At the Nuclear Physics Institute of the ASCR in Rez near Prague, the source reaction of p+Be was investigated for proton energy of 35 MeV and beam current intensity of 9.2μA. The produced white spectrum with neutron flux up to 1011 cm−2 s−1 was determined by the dosimetry foils activation technique at two sample-to-target distances and validated against the Monte Carlo predictions. The neutron field of these high-flux p(35)-Be white neutron source represents the useful tool for experimental simulation of the spectrum of the IFMIF facility, validating the activation cross-section data in the energy range relevant to the IFMIF, studying the radiation hardness of electronics against the high-energy neutron fields, and various activation experiments.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Radiation
Authors
, , , , , , ,