Article ID Journal Published Year Pages File Type
1883571 Radiation Physics and Chemistry 2014 6 Pages PDF
Abstract

•Electron beam irradiation induced abnormal development of the cutworm.•Electron beam irradiation induced the sterility of the cutworm.•Electron beam irradiation increased levels of DNA damage.•DNA damage by high irradiation exposure was not completely repaired.

The armyworm, Spodoptera litura (F.) is a polyphagous and important agricultural pest worldwide. In this study, we examined the effect of electron beam irradiation on developmental stages, reproduction, and DNA damage of S. litura. Eggs (0–24 h old), larvae (3rd instar), pupae (3 days old after pupation), and adults (24 h after emergence) were irradiated with electron beam irradiation of six levels between 30 and 250 Gy. When eggs were irradiated with 100 Gy, egg hatching was completely inhibited. When the larvae were irradiated, the larval period was significantly delayed, depending on the doses applied. At 150 Gy, the fecundity of adults that developed from irradiated pupae was entirely inhibited. However, electron beam irradiation did not induce the instantaneous death of S. litura adults. Reciprocal crosses between irradiated and unirradiated moths demonstrated that females were more radiosensitive than males. We also conducted the comet assay immediately after irradiation and over the following 5 days period. Severe DNA fragmentation in S. litura cells was observed just after irradiation and the damage was repaired during the post-irradiation period in a time-dependent manner. However, at more than 100 Gy, DNA damage was not fully recovered.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Radiation
Authors
, , , ,