Article ID Journal Published Year Pages File Type
1884444 Radiation Physics and Chemistry 2010 4 Pages PDF
Abstract

Shelf life of the formulations designed for the industrial manufacture of radiation sterilizable syringes and other medical disposables is a very important issue world over. Radiation compatible formulations were developed earlier in the laboratory by the incorporation of primary and secondary antioxidants along with processing stabilizers in a random polypropylene copolymer. It has been reported in literature that the mobilizing agents namely hydrocarbons, greases, wax and the plasticizer, dioctyl phthalate (DOP) impart radiation resistance to the polypropylene by providing free volume. It was envisaged that the addition of DOP to the afore-mentioned formulation might favorably influence the mechanical, optical and thermal properties of our formulation. To study the influence of addition of DOP on the afore-mentioned properties, the addition of 1%, 2% and 3% of the mobilizer was made, followed by the irradiation of resulting heat pressed sheets to the industrial standard dose of 25 kGy. Two important characteristic mechanical properties to determine the suitability of the radiation sterilized materials comprise angle of breakage and the haze percent. After irradiation and even on accelerated ageing of the irradiated material, the angle of breakage of heat press sheets of formulations containing 1%, 2% and 3% of DOP was found to be 180°, demonstrating the role of DOP, in imparting additional radiation stability. In case of the irradiated control sample, the angle of breakage was much lower. In the heat pressed sheets containing the DOP, a remarkable retention in the tensile strength, percentage elongation at break, along with improved thermal stability was observed. The formulation devoid of DOP demonstrated poor retention of the afore-mentioned characteristic properties .The observed improvement in thermal stability of the formulations containing DOP hints at the likely possibility of reuse of these materials by autoclaving which is considered an additional attribute.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Radiation
Authors
, , ,