Article ID Journal Published Year Pages File Type
1884894 Radiation Physics and Chemistry 2006 19 Pages PDF
Abstract

The basic components of Monte Carlo simulation of bremsstrahlung emission by electrons are presented. Various theoretical cross-sections that have been used in Monte Carlo codes are described and the emphasis is on the more accurate partial-wave cross-sections for which numerical databases are available. Sampling algorithms for a combination of numerical scaled energy-loss cross-sections and various analytical approximations to the intrinsic angular distribution are presented. Analogue simulation of the energy spectra and angular distribution of X rays from targets irradiated by electron beams is very inefficient and a simple variance-reduction technique, which is easy to implement and has proven to be particularly effective in speeding up these simulations, is described. Results from simulations of X-ray spectra with the general-purpose Monte Carlo code penelope are compared with experimental data for different materials and incident electrons with energies in the 20 keV to 1 GeV energy range.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Radiation
Authors
, , , ,