Article ID Journal Published Year Pages File Type
1885860 Radiation Physics and Chemistry 2016 19 Pages PDF
Abstract
Solid polymer electrolytes with gelatin as host polymer are subjected to gamma irradiation with dose varying from 0 to 100 kGy. Two sets of samples are studied, one with and one without addition of lithium perchlorate as ionic salt. The effect of varying plasticizer content, salt fraction and radiation dose on the impedance is measured. The dc (direct current) ion-conductivity is determined from impedance spectroscopy results. It is shown that relative to the unirradiated sample, the room temperature dc ion-conductivity decreases in general on irradiation, by an order of magnitude. However on comparing results for the irradiated samples, a dose of 60 kGy is seen to produce the highest ion-conductivity. Considering the variation of all parameters, the highest dc-conductivity of 6.06x10−2 S/m is obtained for the un-irradiated sample at room temperature, with 12.5 wt% LiClO4 and 35.71 wt% of glycerol as plasticizer. The samples are characterized in addition by XRD, SEM and FTIR respectively. Cyclic voltametry is performed for the confirmation of the electrolytic performance for pristine and gamma irradiated samples. To understand the experimental results, a model incorporating normal, as well as anomalous diffusion has been applied. Generalized calculus is used to model the anomalous diffusion. It is shown that this model successfully reproduces the experimental frequency dependence of the complex impedance for samples subjected to varying gamma dose. The physical interpretation of the model parameters and their variation with sample composition and irradiation dose is discussed.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Radiation
Authors
, ,