Article ID Journal Published Year Pages File Type
1886135 Radiation Physics and Chemistry 2014 9 Pages PDF
Abstract

•The natural radiation levels in soil and sediment samples from floating water due to heavy rains were studied.•The activity concentrations of 214Pb, 214Bi, 228Ac, 208Tl, 40K, 226Ra and 228Ra.•The absorbed dose rate, radium equivalents, external hazard index, annual dose equivalents and effective dose are discussed.

The natural radiation levels in soil and sediment samples collected from floating water from a land runway resulting from heavy rains in the Jeddah region as well as the activity in the population of its surrounding environments were studied. In the regions surrounding Jeddah, the movements of floating water may increase the concentration of radioactivity due to the movement of soil due to heavy rains. In addition, the technological development of industry, agriculture and other sources around the Jeddah region has increased environmental pollution, resulting in noticeable concentrations of radioactivity. The measured activity concentrations of 214Pb, 214Bi, 228Ac, 208Tl, 40K, 226Ra and 228Ra in the studied area suggest that they are within the world average for soils and sediments, except those for water sample no. 4; the concentration in this sample was five times higher than the world average concentration (this water is not consumable). Herein, the radioactivity concentrations that were obtained from the analysis of soil and sediment samples that were collected from the investigated area are discussed. Additionally, the absorbed dose rate (D), radium equivalent activity (Raeq), external hazard index (Hex), annual gonadal dose equivalent (AGDE) and annual effective dose equivalent (AEDE) were evaluated. For the soil and sediment samples, the average radioactivity concentrations were determined for each site and are expressed in Becquerels per kilogram (Bq/kg) of dry weight, while for the measurement of both the 226Ra and 228Ra isotopes in the water samples, the activity concentration is expressed in picoCuries per liter (pCi/l). The obtained results were compared with other measurements from different countries. The movement of floating water around the Jeddah region increases the concentration of radioactivity due to the movement of soils with heavy rains.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Radiation
Authors
, , , ,