Article ID Journal Published Year Pages File Type
1886340 Radiation Physics and Chemistry 2013 7 Pages PDF
Abstract
NASA is studying the effects of long-term space radiation on potential multifunctional composite materials for habitats to better determine their characteristics in harsh space environments. Two epoxy-matrix composite materials were selected for the study and were mounted in a test stand that simulated the biaxial stresses of a pressure vessel wall. The samples in the test stand were exposed to radiation at fast (0.1478 krad/s) and slow (0.0139 krad/s) dose rates, and the strain and temperature were recorded during the exposure. During a fast dose rate exposure, negative strain was recorded, decreasing with time, an indication of matrix shrinkage. Given previous radiation studies of polymers, this is expected to be a result of radiation-induced crosslinking in the epoxy matrix. However, with a slow dose rate, the materials exhibited a positive strain that increased with time, corresponding to stretching of the materials. This result is consistent with scission or degradation of the matrix occurring, possibly due to oxidative degradation.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Radiation
Authors
, , , , ,