Article ID Journal Published Year Pages File Type
1886734 Radiation Physics and Chemistry 2010 5 Pages PDF
Abstract

In reply to “Comment on the possible role of reaction H+H2O→H2+OH in the radiolysis of water at high temperatures” (Bartels, 2009 Comment on the possible role of the reaction H+H2O→H2+OH in the radiolysis of water at high temperatures. Radiat. Phys. Chem. 78, 191–194) we present an alternative thermodynamic estimation of the reaction rate constant k. Based on the non-symmetric standard state convention we have calculated that the Gibbs energy of reaction ΔrG=57.26 kJ mol−1 and the reaction rate constant k=7.23×10−5 M−1 s−1 at ambient temperature. Re-analysis of the thermodynamic estimation (Bartels, 2009 Comment on the possible role of the reaction H+H2O→H2+OH in the radiolysis of water at high temperatures. Radiat. Phys. Chem. 78, 191–194) showed that the upper limit for the rate constant at 573 K is k=1.75×104 M−1 s−1 compared to the value predicted by the diffusion-kinetic modelling (3.18±1.25)×104 M−1 s−1 (Swiatla-Wojcik, D., Buxton, G.V., 2005. On the possible role of the reaction H+H2O→H2+OH in the radiolysis of water at high temperatures. Radiat. Phys. Chem. 74(3–4), 210–219). The presented thermodynamic evaluation of k(573) is based on the assumption that k can be calculated from ΔrG and the rate constant of the reverse reaction which, as discussed, are both uncertain at high temperatures.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Radiation
Authors
, ,