Article ID Journal Published Year Pages File Type
1886740 Radiation Physics and Chemistry 2010 11 Pages PDF
Abstract

Polyurethane (PU) catheters made of Pellethane 2363-80AE® were treated in two different ways: a new treatment with low temperature plasma that could be used to decontaminate reusable polymer devices in hospitals, and an e-beam (EB) irradiation. Polymer structure and bulk properties were studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), infrared spectroscopy (FTIR) and size exclusion chromatography (SEC). Although PU was strongly modified by the e-beam irradiation leading to branching of polymer chains, it had no or little impact on the thermo-mechanical properties of the catheters and on the hard/soft segment organization of PU. For plasma-treated samples, no modification in the polymer bulk was observed, confirming that plasma treatment might be considered as an alternative to e-beam irradiation. The analysis of surface modifications showed an evolution of superficial topology and chemical composition (grafting of oxygen and nitrogen species) of the catheters after treatment, with a more polar and hydrophilic surface.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Radiation
Authors
, , , , , , , , ,