Article ID Journal Published Year Pages File Type
1887004 Radiation Physics and Chemistry 2008 4 Pages PDF
Abstract

The cis-syn-cis isomer of dicyclohexano-18-crown-6 (DCH18C6) has been shown to be an efficient extractant able to perform the separation of Pu(IV) and U(VI) from fission products and then the separation of Pu(IV) from U(VI) without valence exchange as required in the PUREX process. This macrocycle was irradiated in nitric acid with a 137Cs γ source to study its radiation chemical stability. Radiation chemical yields (G) were determined by gas chromatography. The results show that the presence of uranyl nitrate has a strong influence on DCH18C6 radiation chemical stability. Indeed, the presence of this template ion increases the macrocycle stability by promoting fragments recombination.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Radiation
Authors
, , , ,