Article ID Journal Published Year Pages File Type
1891022 Radiation Physics and Chemistry 2016 9 Pages PDF
Abstract

•γ-irradiation synthesis produced a small amount of δ-FeOOH in samples.•The use of 2-propanol increased the yield of rod-like goethite particles.•Experimental conditions for the synthesis of pure magnetite particles were found.•γ-irradiation of an Fe(III)/PEO aqueous precursor produced rigid black hydrogels.

Black hydrogels were synthesized using γ-irradiation of poly(ethylene oxide) (PEO)/iron(III) chloride precursor solutions. The magnetic properties of such hydrogels were improved by adding 2-propanol as a hydroxyl scavenger and/or NaBH4 as a strong chemical reducing agent; however, the rigidity and compactness of thus synthesized PEO hydrogels deteriorated. The magnetic suspension containing pure magnetite nanoparticles was obtained using γ-irradiation of an Fe(III)/PEO deoxygenated aqueous solution in the presence of 2-propanol and NaBH4. The γ-irradiation of an iron(III) chloride aqueous precursor solution in the presence of PVP produced a magnetic suspension due to the formation of a small amount of δ-FeOOH (feroxyhyte). The γ-irradiation of Fe(III)/CTAB (cetyltrimethylammonium bromide) aqueous solutions favored the formation of goethite. γ-irradiation in the presence of 2-propanol increased the yield of rod-like goethite nanoparticles. A small amount of δ-FeOOH found in the Fe(III)/PVP and Fe(III)/CTAB suspensions suggests the formation of Fe(OH)2upon γ-irradiation, which then under atmospheric conditions rapidly oxidized into δ-FeOOH.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Radiation
Authors
, , , ,