Article ID Journal Published Year Pages File Type
1891938 Radiation Physics and Chemistry 2010 6 Pages PDF
Abstract
We enhanced the decomposition and the removal of toluene in gas phase using a combined method that consists of electron beam (EB) irradiation and catalytic oxidation. The catalytic oxidation system comprises oxidizing particles of 0.1 wt% Pt or 0.1 wt% Pd deposited to supporting materials, which were also used as adsorbents. These adsorbents-supporting materials are Cordierite, Y-zeolite, and γ-alumina. We demonstrated that 100% removal of toluene can be achieved using approximately 9 kGy of dose level in the presence of Pt or Pd deposited to 12 wt%. The G (-toluene) values were determined to be 0.498 and 0.829 μmol/J in the absence and presence of these catalysts with adsorbents, respectively. We have also demonstrated that the presence of the oxidation-catalyst prevents the toluene from undergoing radiolytic polymerization.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Radiation
Authors
, , , , , , ,