| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 1892686 | Journal of Geometry and Physics | 2015 | 21 Pages | 
Abstract
												In this note we construct the simplest unitary Riemann surface braid group representations geometrically by means of stable holomorphic vector bundles over complex tori and the prime form on Riemann surfaces. Generalised Laughlin wave functions are then introduced. The genus one case is discussed in some detail also with the help of noncommutative geometric tools, and an application of Fourier–Mukai–Nahm techniques is also given, explaining the emergence of an intriguing Riemann surface braid group duality.
Related Topics
												
													Physical Sciences and Engineering
													Mathematics
													Mathematical Physics
												
											Authors
												Mauro Spera, 
											