Article ID Journal Published Year Pages File Type
1892688 Journal of Geometry and Physics 2015 21 Pages PDF
Abstract

In this paper, we explore dynamics of the nonholonomic system called vakonomic mechanics   in the context of Lagrange–Dirac dynamical systems using a Dirac structure and its associated Hamilton–Pontryagin variational principle. We first show the link between vakonomic mechanics and nonholonomic mechanics from the viewpoints of Dirac structures as well as Lagrangian submanifolds. Namely, we clarify that Lagrangian submanifold theory cannot represent nonholonomic mechanics properly, but vakonomic mechanics instead. Second, in order to represent vakonomic mechanics, we employ the space TQ×V∗TQ×V∗, where a vakonomic Lagrangian is defined from a given Lagrangian (possibly degenerate) subject to nonholonomic constraints. Then, we show how implicit vakonomic Euler–Lagrange equations can be formulated by the Hamilton–Pontryagin variational principle   for the vakonomic Lagrangian on the extended Pontryagin bundle (TQ⊕T∗Q)×V∗(TQ⊕T∗Q)×V∗. Associated with this variational principle, we establish a Dirac structure on (TQ⊕T∗Q)×V∗(TQ⊕T∗Q)×V∗ in order to define an intrinsic vakonomic Lagrange–Dirac system  . Furthermore, we also establish another construction for the vakonomic Lagrange–Dirac system using a Dirac structure on T∗Q×V∗T∗Q×V∗, where we introduce a vakonomic Dirac differential. Finally, we illustrate our theory of vakonomic Lagrange–Dirac systems by some examples such as the vakonomic skate and the vertical rolling coin.

Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, ,