| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 1894112 | Journal of Geometry and Physics | 2010 | 21 Pages | 
Abstract
												A BV algebra is a formal framework within which the BV quantization algorithm is implemented. In addition to the gauge symmetry, encoded in the BV master equation, the master action often exhibits further global symmetries, which may be in turn gauged. We show how to carry this out in a BV algebraic set up. Depending on the nature of the global symmetry, the gauging involves coupling to a pure ghost system with a varying amount of ghostly supersymmetry. Coupling to an N=0 ghost system yields an ordinary gauge theory whose observables are appropriately classified by the invariant BV cohomology. Coupling to an N=1 ghost system leads to a topological gauge field theory whose observables are classified by the equivariant BV cohomology. Coupling to higher N ghost systems yields topological gauge field theories with higher topological symmetry. In the latter case, however, problems of a completely new kind emerge, which call for a revision of the standard BV algebraic framework.
											Keywords
												
											Related Topics
												
													Physical Sciences and Engineering
													Mathematics
													Mathematical Physics
												
											Authors
												Roberto Zucchini, 
											