Article ID Journal Published Year Pages File Type
1894365 Chaos, Solitons & Fractals 2006 10 Pages PDF
Abstract
In this paper, bifurcations in dynamical systems with fuzzy uncertainties are studied by means of the fuzzy generalized cell mapping (FGCM) method. A bifurcation parameter is modeled as a fuzzy set with a triangular membership function. We first study a boundary crisis resulting from a collision of a fuzzy chaotic attractor with a fuzzy saddle on the basin boundary. The fuzzy chaotic attractor together with its basin of attraction is eradicated as the fuzzy control parameter reaches a critical point. We also show that a saddle-node bifurcation is caused by the collision of a fuzzy period-one attractor with a fuzzy saddle on the basin boundary. The fuzzy attractor together with its basin of attraction suddenly disappears as the fuzzy parameter passes through a critical value.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Statistical and Nonlinear Physics
Authors
, ,