| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 1895459 | Journal of Geometry and Physics | 2016 | 11 Pages | 
Abstract
												Let A be a nilpotent Filippov (n-Lie) algebra of dimension d and put s(A)=(dâ1n)+nâ1âdimM(A) and t(A)=(dn)âdimM(A), where M(A) denotes the multiplier of A. The aim of this paper is to classify all nilpotent n-Lie algebras A for which s(A)=0, 1 or 2, and apply it in order to determine all nilpotent n-Lie algebras A satisfying 0â¤t(A)â¤8.
											Related Topics
												
													Physical Sciences and Engineering
													Mathematics
													Mathematical Physics
												
											Authors
												H. Darabi, F. Saeedi, M. Eshrati, 
											