Article ID Journal Published Year Pages File Type
1897830 Physica D: Nonlinear Phenomena 2008 12 Pages PDF
Abstract

Based on the work of Nishikawa and Motter, who have extended the well-known master stability framework to include non-diagonalizable cases, we develop another extension of the master stability framework to obtain criteria for global synchronization. Several criteria for global synchronization are provided which generalize some previous results. The Jordan canonical transformation method is used in stead of the matrix diagonalization method. Especially, we show clearly that, the synchronizability of a dynamical network with nonsymmetric coupling is not always characterized by its second-largest eigenvalue, even though all the eigenvalues of the nonsymmetric coupling matrix are real. Furthermore, the effects of the asymmetry of coupling on synchronizability of networks with different structures are analyzed. Numerical simulations are also done to illustrate and verify the theoretical results on networks in which each node is a dynamical limit cycle oscillator consisting of a two-cell cellular neural network.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,