Article ID Journal Published Year Pages File Type
1899184 Reports on Mathematical Physics 2016 11 Pages PDF
Abstract

In Lorentz–Finsler geometry it is natural to define the Finsler Lagrangian over a cone (Asanov's approach) or over the whole slit tangent bundle (Beem's approach). In the former case one might want to add differentiability conditions at the boundary of the (timelike) cone in order to retain the usual definition of lightlike geodesics. It is shown here that if this is done then the two theories coincide, namely the ‘conic’ Finsler Lagrangian is the restriction of a slit tangent bundle Lagrangian. Since causality theory depends on curves defined through the future cone, this work establishes the essential uniqueness of (sufficiently regular) Finsler spacetime theories and Finsler causality.

Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
,